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Cessi’s motivation: understanding ocean circulation
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Cessi’s motivation: understanding ocean circulation

In models, competing influences of temperature and salinity give
rise to alternative stable flow states:

e.g. Stommel (1961), Welander (1986), Manabe and Stouffer (1988)
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Cessi’s motivation: understanding ocean circulation

The Younger Dryas
A period of abnormally cold temperatures that occurred between
12,900 and 11,500 years BP during the last deglaciation

Broecker, Wallace S. (2006). ”Was the Younger Dryas Triggered by a Flood?”. Science 312 (5777): 11461148
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Cessi’s motivation: understanding ocean circulation

altered salinity forcing
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My motivation

Modeling resilience to

transient parameter changes
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The box model: setup

∆ρ = αS(S1 − S2)− αT (T1 − T2)

Q(∆ρ) = 1
td

+ q(∆ρ)2

V
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The box model: setup
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The box model: dimension reduction
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The box model: dimension reduction

∆T ′ = − 1

tr
(∆T − θ)− Q(∆ρ)∆T

∆S ′ =
F (t)

H
S0 − Q(∆ρ)∆S

x ′ = −α(x − 1)− x
[
1 + µ2(x − y)2

]
y ′ = p(t)− y

[
1 + µ2(x − y)2

]
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The box model: dimension reduction

x ′ = −α(x − 1)− x
[
1 + µ2(x − y)2

]
y ′ = p(t)− y

[
1 + µ2(x − y)2

]
Since α ≡ td

tr
is very large,

x = 1 +O(α−1)

y ′ = p(t)− y
[
1 + µ2(1− y)2

]
+O(α−1)

x ≈ 1

y ′ ≈ p(t)− y
[
1 + µ2(1− y)2

]
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The box model: one state variable

y ′ = p(t)− y
[
1 + µ2(1− y)2

]
= p̄ + p̂(t)− y

[
1 + µ2(1− y)2

]

p̂(t) = 0 =⇒ y ′ = − ∂

∂y

[ V (y)︷ ︸︸ ︷
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Deterministic perturbations

y ′ = p̄ + p̂(t)− y
[
1 + µ2(1− y)2

]
Let p̂(t) =


0 t ≤ 0

∆ 0 ≤ t ≤ τ
0 t > τ
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Deterministic perturbations
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Deterministic perturbations

For ∆ > ∆0, how long can the system tolerate p = p̄ + ∆
and still recover to ya?

dy

dt
= p̄ + ∆− y

[
1 + µ2(1− y)2

]
dy

p̄ + ∆− y [1 + µ2(1− y)2]
= dt∫ yb

ya

dy

p̄ + ∆− y [1 + µ2(1− y)2]
=

∫ τ

0
dt = τ

[Why does this work?]
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Deterministic perturbations
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Cessi’s calculation

• 1,000 years −→ τ = 4.6

• Critical value of ∆ for τ = 4.6 is ∆ ≈ 0.3

• ∆0 = 0.2 corresponds to freshwater flux of 0.4 m yr−1

• Max meltwater flux preceeding Younger Dryas was 0.5 m yr−1

“Close”
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Questions to pursue

• What about p̂(t) continuous?

• How do O(α−1) terms affect results?

• Extend calculations to higher dimensional systems?
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